Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux
نویسندگان
چکیده
We have applied association analysis to 17 years of ocean climate observations and predicted net ecosystem production on land to infer short-term (monthly to yearly) teleconnections between sea surface temperature and terrestrial carbon cycles. The analysis suggests that, on a global level, ocean climate indices can be used to reliably predict net ecosystem carbon fluxes over more than 58 percent of the non-desert/ice covered land surface, commonly with a lead period of 2-6 months. These strong teleconnections detected between ocean surface climate and seasonal carbon gain in terrestrial vegetation offer important capabilities for making inferences about the variability in the terrestrial carbon cycle of natural and agricultural ecosystems worldwide .
منابع مشابه
Global teleconnections of climate to terrestrial carbon flux
[1] We have applied association analysis to 17 years of climate index observations and predicted net ecosystem production on land to infer short-term (monthly to yearly) teleconnections between atmosphere-ocean climate forcing and terrestrial carbon cycles. The analysis suggests that on a global level, climate indices can be significantly correlated to net ecosystem carbon fluxes over more than...
متن کاملAtmospheric Bridge, Oceanic Tunnel, and Global Climatic Teleconnections
[1] We review teleconnections within the atmosphere and ocean, their dynamics and their role in coupled climate variability. We concentrate on teleconnections in the latitudinal direction, notably tropical-extratropical and interhemispheric interactions, and discuss the timescales of several teleconnection processes. The tropical impact on extratropical climate is accomplished mainly through th...
متن کاملTerrestrial mechanisms of interannual CO2 variability
[1] The interannual variability of atmospheric CO2 growth rate shows remarkable correlation with the El Niño Southern Oscillation (ENSO). Here we present results from mechanistically based terrestrial carbon cycle model VEgetation-Global-Atmosphere-Soil (VEGAS), forced by observed climate fields such as precipitation and temperature. Land is found to explain most of the interannual CO2 variabil...
متن کاملClimate, carbon cycling, and deep-ocean ecosystems.
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature i...
متن کاملEvidence for Oceanic Control of Interannual Carbon Cycle Feedbacks
Large-scale carbon-cycle feedbacks within Earth’s climate system can be inferred from the statistical correlation of atmospheric CO2 and other climate observations. These statistical relationships can serve as validation targets for global carbon-cycle models. Fourier-transform coherence between atmospheric CO2 measured at Mauna Loa, Hawaii, and Hadley Centre global-average temperatures changed...
متن کامل